Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cell Oncol (Dordr) ; 45(5): 893-909, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35930163

RESUMO

PURPOSE: Although YAP1 and TAZ are believed to be equivalent downstream effectors of the Hippo pathway, differential expression of YAP1 or TAZ suggests distinct functions during cancer progression. The exact role of YAP1 and TAZ in esophageal cancer, the 6th leading cancer-related mortality in the world, remains elusive. METHODS: Following single or double manipulation of YAP1 or TAZ expression, we subjected these manipulated cells to proliferation, migration, invasion, and xenograft tumorigenesis assays. We used RT-qPCR and Western blotting to examine their expression in the manipulated cells with or without inhibition of transcription or translation. We also examined the impact of YAP1 or TAZ deregulation on clinical outcome of esophageal cancer patients from the TCGA database. RESULTS: We found that YAP1 functions as a tumor suppressor whereas TAZ exerts pro-tumor functions in esophageal cancer cells. We also found a significant increase in TAZ mRNA expression upon YAP1 depletion, but not vice versa, despite the downregulation of CTGF and CYR61, shared targets of YAP1 and TAZ, in xenografted tissue cells. In addition to transcriptional regulation, YAP1-mediated TAZ expression was found to occur via protein synthesis. Restored TAZ expression mitigated YAP1-mediated suppression of cellular behavior. By contrast, TAZ silencing reduced the promoting effect exerted by YAP1 depletion on cellular behaviors. The observed anti-tumor function of YAP1 was further supported by a better overall survival among esophageal cancer patients with a high YAP1 expression. CONCLUSION: From our data we conclude that YAP1 functions as a suppressor and negatively regulates pro-tumor TAZ expression via transcriptional and translational control in esophageal cancer.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Esofágicas/genética , Transdução de Sinais/genética , RNA Mensageiro/genética
3.
PLoS One ; 6(5): e20463, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21647382

RESUMO

Polyploidy is a pivotal process in plant evolution as it increase gene redundancy and morphological intricacy but due to the complexity of polysomic inheritance we have only few genetic maps of autopolyploid organisms. A robust mapping framework is particularly important in polyploid crop species, rose included (2n = 4x = 28), where the objective is to study multiallelic interactions that control traits of value for plant breeding. From a cross between the garden, peach red and fragrant cultivar Fragrant Cloud (FC) and a cut-rose yellow cultivar Golden Gate (GG), we generated an autotetraploid GGFC mapping population consisting of 132 individuals. For the map we used 128 sequence-based markers, 141 AFLP, 86 SSR and three morphological markers. Seven linkage groups were resolved for FC (Total 632 cM) and GG (616 cM) which were validated by markers that segregated in both parents as well as the diploid integrated consensus map.The release of the Fragaria vesca genome, which also belongs to the Rosoideae, allowed us to place 70 rose sequenced markers on the seven strawberry pseudo-chromosomes. Synteny between Rosa and Fragaria was high with an estimated four major translocations and six inversions required to place the 17 non-collinear markers in the same order. Based on a verified linear order of the rose markers, we could further partition each of the parents into its four homologous groups, thus providing an essential framework to aid the sequencing of an autotetraploid genome.


Assuntos
Mapeamento Cromossômico/métodos , Fragaria/genética , Genoma de Planta/genética , Rosa/genética , Tetraploidia , Cromossomos de Plantas/genética , Marcadores Genéticos/genética , Reprodutibilidade dos Testes
4.
Theor Appl Genet ; 122(3): 489-500, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20936462

RESUMO

We have constructed the first integrated consensus map (ICM) for rose, based on the information of four diploid populations and more than 1,000 initial markers. The single population maps are linked via 59 bridge markers, on average 8.4 per linkage group (LG). The integrated map comprises 597 markers, 206 of which are sequence-based, distributed over a length of 530 cM on seven LGs. By using a larger effective population size and therefore higher marker density, the marker order in the ICM is more reliable than in the single population maps. This is supported by a more even marker distribution and a decrease in gap sizes in the consensus map as compared to the single population maps. This unified map establishes a standard nomenclature for rose LGs, and presents the location of important ornamental traits, such as self-incompatibility, black spot resistance (Rdr1), scent production and recurrent blooming. In total, the consensus map includes locations for 10 phenotypic single loci, QTLs for 7 different traits and 51 ESTs or gene-based molecular markers. This consensus map combines for the first time the information for traits with high relevance for rose variety development. It will serve as a tool for selective breeding and marker assisted selection. It will benefit future efforts of the rose community to sequence the whole rose genome and will be useful for synteny studies in the Rosaceae family and especially in the section Rosoideae.


Assuntos
Mapeamento Cromossômico/métodos , Diploide , Rosa/genética , Ligação Genética , Genótipo , Fenótipo , Característica Quantitativa Herdável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...